Object-oriented Modeling and Implementation of Structural Analysis Software					
Module-No./Abbreviation	Credits	Workload	Term	Frequency	Duration
CE-WP10/OOFEM	3 CP	90 h	2 nd Sem.	Summer term	1 Semester
Courses			Contact hours	Self-Study	Group Size:
Object-oriented Modeling and Implementation of			2 SWS (30 h)	60 h	No Restrictions
Structural Analysis Software					

Prerequisites

Finite Element Methods in Linear Structural Mechanics (CE-P05) and Modern Programming Concepts in Engineering (CE-P04)

Learning goals / Competences

The seminar connects the theory of finite element methods (FEM) and object-oriented programming. After successfully completing the module, the students

- can implement the theories and methods of the course 'Finite Element Methods in Linear Structural Mechanics' in an object-oriented finite element program and apply this program for the analysis of engineering structures,
- have developed a program for the computation of spatial truss structures,
- can verify the program using benchmark examples,
- gained deep insight into the most relevant aspects for the implementation within the FEM and possibilities of using object-oriented programming for numerical approaches.

Content

The main topics of the course are:

- short summary of the basics of FEM and project-oriented programming
- preparing a project with two parts
 - Part 1: students individually develop and verify an object-oriented finite element program for the linear analysis of spatial truss structures
 - Part 2: students can choose between different options, either, the application developed in the Part 1 is extended to more challenging problems (nonlinear analysis, other element types, etc.) or students switch to an existing object-oriented finite element package (e.g. Kratos) and develop an extension of that software (e.g. material models, element formulations)

Teaching methods

Block seminar / equiv. to 2h lecture

Mode of assessment

Project work and final student presentation (100 %)

Requirement for the award of credit points

Passed project work and final student presentation

Module applicability

MSc. Computational Engineering, MSc. Bauingenieurwesen

Weight of the mark for the final score

3 %

Module coordinator and lecturer(s)

Prof. Dr. techn. G. Meschke, Prof. Dr.-Ing. M. Baitsch, Assistants

Further information